DNA-binding specificity of rice mariner-like transposases and interactions with Stowaway MITEs
نویسندگان
چکیده
Mariner-like elements (MLEs) are DNA transposons found throughout the plant and animal kingdoms. A previous computational survey of the rice (Oryza sativa) genome sequence revealed 34 full length MLEs (Osmars) belonging to 25 distinct families. This survey, which also identified sequence similarities between the Osmar elements and the Stowaway superfamily of MITEs, led to the formulation of a hypothesis whereby Stowaways are mobilized by OSMAR transposases. Here we investigate the DNA-binding activities and specificities of two OSMAR transposases, OSMAR5 and OSMAR10. Like other mariner-like transposases, the OSMARs bind specifically to the terminal inverted repeat (TIR) sequences of their encoding transposons. OSMAR5 binds DNA through a bipartite N-terminal domain containing two functionally separable helix-turn-helix motifs, resembling the paired domain of Tc1-like transposases and PAX transcription factors in metazoans. Furthermore, binding of the OSMARs is not limited to their own TIRs; OSMAR5 transposase can also interact in vitro with TIRs from closely related Osmar elements and with consensus TIRs of several Stowaway families mined from the rice genome sequence. These results provide the first biochemical evidence for a functional relationship between Osmar elements and Stowaway MITEs and lead us to suggest that there is extensive cross-talk among related but distinct transposon families co-existing in a single eukaryote genome.
منابع مشابه
Genome-wide analysis of mariner-like transposable elements in rice reveals complex relationships with stowaway miniature inverted repeat transposable elements (MITEs).
Stowaway is a superfamily of miniature inverted repeat transposable elements (MITEs) that is widespread and abundant in plant genomes. Like other MITEs, however, its origin and mode of amplification are poorly understood. Several lines of evidence point to plant mariner-like elements (MLEs) as the autonomous partners of the nonautonomous Stowaway MITEs. To better understand this relationship, w...
متن کاملPIF- and Pong-like transposable elements: distribution, evolution and relationship with Tourist-like miniature inverted-repeat transposable elements.
Miniature inverted-repeat transposable elements (MITEs) are short, nonautonomous DNA elements that are widespread and abundant in plant genomes. Most of the hundreds of thousands of MITEs identified to date have been divided into two major groups on the basis of shared structural and sequence characteristics: Tourist-like and Stowaway-like. Since MITEs have no coding capacity, they must rely on...
متن کاملTuned for transposition: molecular determinants underlying the hyperactivity of a Stowaway MITE.
Miniature inverted repeat transposable elements (MITEs) are widespread in eukaryotic genomes, where they can attain high copy numbers despite a lack of coding capacity. However, little is known about how they originate and amplify. We performed a genome-wide screen of functional interactions between Stowaway MITEs and potential transposases in the rice genome and identified a transpositionally ...
متن کاملMiniature Inverted-repeat Transposable Elements (MITEs) and their Relationship with Established DNA Transposons
I. The discovery of MITEs in plant and animal genomes II. Organizing the diversity of MITEs III. The Tc1/mariner superfamily as a source of MITEs A. MITEs related to Tc1/mariner transposons in C. elegans B. MITEs related to Tc1/mariner transposons in humans C. MITEs related to Tc1/mariner transposons in insects D. MITEs related to Tc1/mariner transposons in plants IV. Tourist-like MITEs are rel...
متن کاملSurvey of transposable elements from rice genomic sequences.
Oryza sativa L. (domesticated rice) is a monocotyledonous plant, and its 430 Mb genome has been targeted for complete sequencing. We performed a high-resolution computer-based survey for transposable elements on 910 Kb of rice genomic DNA sequences. Both class I and II transposable elements were present, contributing 19.9% of the sequences surveyed. Class II elements greatly outnumbered class I...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nucleic Acids Research
دوره 33 شماره
صفحات -
تاریخ انتشار 2005